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We prove that the motion of a test particle in a hard sphere fluid in thermal 
equilibrium converges, in the Boltzmann-Grad limit, to the stochastic process 
governed by the linear Boltzmann equation. The convergence is in the sense of 
weak convergence of the path measures. We use this result to study the steady 
state of a binary mixture of hard spheres of different colors (but equal masses 
and diameters) induced by color-changing boundary conditions. In the Boltz- 
mann-Grad limit the steady state is determined by the stationary solution of the 
linear Boltzmann equation under appropriate boundary conditions. 

KEY WORDS: Test particle in a hard sphere fluid; Boltzmann-Grad limit; 
convergence to the Markov process; governed by the linear Boltzmann 
equation. 

1. i N T R O D U C T I O N  

In a p receed ing  pape r  ~I) we inves t iga ted  self-diffusion for a classical  f luid 
by  cons ider ing  it as c o m p o s e d  of two componen t s  which are  mechan ica l ly  
ident ica l  bu t  differ  by  their  color,  ei ther b lack  or  white. If co lo r -chang ing  
b o u n d a r y  condi t ions  are imposed  at  a slab in such a way  that  there  is a 
cons tan t  incoming  flux of b lack  par t ic les  f rom one  side and  of white 
par t ic les  f rom the other, then as t ~ ce a s teady  state is es tabl ished.  

The  s teady  state cor re la t ion  funct ions  are given by  exit  p robabi l i t i es  of 
test par t ic le  processes.  In  Ref. 1 it was shown that  in the h y d r o d y n a m i c  
scal ing the expec ted  proper t ies  of the color  profile,  e.g., l ineari ty,  fol low 
f rom the a s sumpt ion  that  test par t ic les  behave  a sympto t i ca l ly  as indepen-  
den t  Brownian  part icles .  
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The purpose of this paper is to investigate the steady state color profile 
for a hard sphere gas at low density, i.e., in the Bol tzmann-Grad limit. It 
follows from our previous work that the time-dependent color profile is 
governed in this limit by the linear Boltzmann equation. (2) We will prove 
here that the steady state color profile is deterministic in the Boltzmann- 
Grad limit and is given by the stationary solution of the linear Boltzmann 
equation under appropriate boundary conditions. This kind of situation is 
expected to be true under more general circumstances: If there is a scaling 
limit such that the time-dependent phenomena are described by a certain 
kinetic equation, then a microscopic steady state should converge, in the 
same limit, to a stationary solution of that kinetic equation under appropri- 
ate boundary conditions. The proof is, however, difficult in the general case 
involving in some sense the interchange of the limit t ~ ~ and the scaling 
limit. This requires rather good control over the dynamics. 

In Ref. 3 we studied the problem of heat transport in the Lorentz gas 
in the Bohzmann-Grad  limit. In the Lorentz gas the only transport 
mechanism is diffusion. Our results in Ref. 2 apply therefore also to a 
noninteracting gas of particles carrying color in the external potential 
created by the scatterers. In this sense Ref. 3 is extended here to an 
interacting system. 

The paper consists of two distinct parts. In Section 2 we prove that in 
the Bol tzmann-Grad limit the stochastic process of a single test particle is 
governed by the linear Boltzmann equation. In Ref. 2 it was shown that the 
distribution of the test particle at a single time converges in the Boltzmann- 
Grad limit to the solution of the linear Boltzmann equation. This result was 
trivially extended in Ref. 4 to events depending only on a finite number of 
times. The exit probability is, however, an event which depends on all 
times. Hence to show the convergence of steady states we have to prove a 
stronger result. 

Physically the result obtained here is very natural. So let us take the 
time to explain the content of Theorem 1, to be proved, in a nontechnical 
way. We consider a system of hard spheres of diameter e and unit mass. 
They move inside a box with periodic boundary conditions. The particles 
are distributed according to the grand canonical equilibrium measure with 
inverse temperature /? and fugacity z~ = s  (The limit c---~0 is the 
Bol tzmann-Grad limit.) We regard the particle with label t as our test 
particle. Its initial velocity, vl, has a Maxwellian distribution and its initial 
position is uniformly distributed over the box. After a certain (random) 
time t~ the test particle suffers a first collision. After this collision the test 
particle has the (random) velocity v 2. After another (random) time span t 2 
the test particle suffers a second collision, etc. Let us assume that we 
observe the test particle only over a time span 0 ~< t -<< T with T arbitrary 
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but finite. Then within that time span the test particle has only a finite (but 
arbitrary) number  of collisions. We consider now the joint distribution 

P ~ ( d v ,  a t~dv2  . . . d t ~ d v . + ~ )  

of the random variables v 1, t l , v 2 , . . . ,  tn,e~+ 1, n = 1,2 . . . . .  This distribu- 
tion depends on e because the dynamics and the initial distribution do so. 
We believe, although we have no proof, that P ~ ( d v l  dr2 �9 �9 �9 dt ,  dvn+ 1) has in 
fact a density. In any event P~ can always be written as the sum of a 
regular part, which has a density, and a singular part, 

P~(  d v l d t l d v 2  . . .  dtndvn+ l) 

= p ~(v l ,  t l ,  v 2 . . . . .  tn , Vn+ l )dv l  dt l  dv2 . . .  dt , ,dvn+ I 

-[- f i e ( d • l  d t l  d, O 2 . . .  d tnd~n+ ,) 

The linear Boltzmann equation describes the motion of the test particle 
in the following way: The initial velocity of the test particle is distributed 
according to a Maxwellian with inverse temperature/~. The time t 1 up to 
the first collision has an exponential distribution with a parameter  depend- 
ing on v~. The distribution of v 2 given v 1 is obtained through the collision 
with a fluid particle in equilibrium. The time t 2 up to the second collision 
has an exponential distribution with a parameter  depending on v2, etc. This 
defines then the joint distribution 

p ( V l ,  t l ,V  2 . . . . .  t n , v ~ + O d v l d t l d v 2  . . .  d tndv~+ 1 

which can be written down quite explicitly [cf. (2.4) and (2.5)]. 
We show that 

(i) l i m ( P ' ( d v ~ d t ~ d v 2  . . . d t n d V , + l ) = O ,  n = l , 2  . . . .  
e - ~ 0 J  

The total weight of the singular part  of the distribution vanishes as r ~ 0; 

(ii) lim ( d v l d t ~ d v  2 . . .  d t , ,dvn+ ~ g ( v ~ , t ~ , v  2 . . . . .  t~ ,v~+ 0 
e ~ O d  

xp~(vl ,  t~, v2 . . . . .  tn, v~+ 1) 

= f dv~dt~dv2 . . .  d t ,  dv~+ 1 g ( v p t p v 2  . . . .  , t ,  ,v,+ 0 

•  t p v  2 . . . . .  tn ,v~+ 0 

n = 1, 2 . . . . .  for all bounded functions g. The joint distribution of colli- 
sion times and postcollisional velocities tends to the one computed from the 
linear Boltzmann equation. 

To prove (i) and (ii) we rely again on the perturbational technique for 
the BBGKY hierarchy as developed by O. E. Lanford (5'6) (cf. also Ref. 7). 
The details of the proof differ from the one in Ref. 2. 
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In the second part of the paper the convergence (i) and (ii) is applied 
to the steady state problem. We also investigate local equilibrium. We keep 
this part rather brief, since in essence it follows Ref. 1 with the appropriate 
modifications. 

2. WEAK CONVERGENCE OF THE TEST PARTICLE PROCESS 

We consider a system of hard spheres of diameter ~ and unit mass~ 
They move inside the box A of side length L with periodic boundary 
conditions. The phase space is the grand canonical phase space f' 
= (_Jn~>l(A • R3) n. A point 7 ~ F is specified by the number, n, of particles 
and their positions and momenta (ql,  Pl  . . . . .  qn,p~). 'We use the short- 
hand xj = (qj, pj). Let &, be the Lebesgue measure defined by d'~ p(A • N3)~ 
= ( 1 / n ! ) d x  I . . .  dx~. 

For later convenience we define certain subsets of F. Let F(n) 
=(A• and F ( n ; e ) = { x  1 . . . . .  x ,  E F ( n ) [ [ q  i - q j [ ~ > e  for any pair 
i=/=j, i , j  = 1 , . . . ,  n}. Furthermore, with t >/0, let F(n;0, t) = {x I . . . .  , x~ 

F(n) ] qj - p js  ~ qi - Pi s, mod A, for any pair i r j ,  i, j -- 1 . . . . .  n and 
all times 0 < s < t}; i.e., point particles which start at (x 1 . . . . .  x,~) ~ F(n; 
0, t) and evolve backwards in time have no spatial coincidence during the 
time span t. We set Y(e) = U,~>IF(n; e) and F(0, t) = [..),>~lF(n; O, t). F\F(0, 
t) is a set of d,[-measure zero. 

Let/~'  be the grand canonical equilibrium measure on 17 with fugacity 
z, = e-2z and inverse temperature/3. The Maxwellian at this temperature is 
denoted by h/~. Let T [ : F  ~ I" be the dynamical flow of hard spheres. T 7 
exists/~--a.s. (8) 

We define the stochastic process of a single test particle for the time 
interval [0, T], 0 < T < m. Let ~2 denote the path space for the momen- 
tum of the test particle. A path r E ~2 is a piecewise constant, right contin- 
uous function o~:[0, T]---~N 3. ~o is specified by (t l ,  v ~ , . . . ,  t ~ , v k ) , t j > O ,  
~,~= I tj = T, vj E R 3, j = 1 . . . . .  k, k = 1,2 . . . .  t/ is the time between the 
( j  - 1)th and j th  collision during which the velocity of the particle is vj, i.e., 
~o ( t ) =v  1 for 0<~ t <  t 1 and o~( t )=vj  for t 1+ �9 �9 �9 + t j _ l  < t < t  1 
+ . - .  + t j , j = 2  . . . . .  k. 

In this way f~ is identified with a subset of [._J~>lR 4k. ~2 is equipped 
with the Euclidean topology inherited from [..Jk~>~R 4k. Let 63 denote its 
Borel o algebra and let 63f denote the algebra of events depending only on 
a finite number of times. ~2, 63, and 63f depend on T. If needed, we add 
explicitly the time interval under consideration as, e.g., f~[z, T]. We regard 
the particle with label 1 as the test particle. Let p ' ( t , 7 )  denote the 
momentum of the first particle at time t for initial conditions -~ E F. Let 
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G : F  ~ ~2 be the map 

G : V ~  {t~-->p'(t,y), 0 <<. t ~ T}  (2.1) 

G is defined/~'-a.s,  and induces a probability measure P" on ~2 by 

P' (A)  = I~ ' (G- 'A)  (2.2) 

for all A E ~3. We denote by pC(t) the momentum process of the test 
( =  first) particle considered as a random variable on ~2. 

Let pc(.  ]p) be P~ conditioned on pc(0), pc(.  IP) is defined @-a.s.  
since in equilibrium Pl =p~(0)  is distributed as hp(pl)dpl and P~(doa) 
= fP (d  Ip)he(e) @. 

Because of periodic boundary conditions pc(t) conditioned on (ql, Pl) 
is independent of the conditioning on ql. The position process of the test 
particle is then given by 

q'( t)  = q + s pC(s), mod A (2.3) 

We describe now the limiting Markov jump process. Let p(t)  be the 
Markov jump process on a with inverse waiting time 

X(p) = ~z f dp' IP-  P'lhe (P') (2.4) 

and jump probability 

E(p,e') [p_p,[ de' (2.5) 

Here E(p,  p') is the plane through p '  orthogonal to p ' - p  and de is the 
two-dimensional Lebesgue measure on E(p, p'). Using the conservation of 
energy in a collision, it is shown in Ref. 4 that p(t)  is well defined, in the 
sense tha tp( t )  has a finite number of jumps in any finite time interval. Let 

g q(t) = q + ds p(s), modA (2.6) 

be the position process. The forward equation of the Markov process 
(q(t), t)(t)) is the linear Bollzmann equation 

~t = ~-~ s dp l d C~ Ca " ( P - P l ) f (q,  p, t)  - p  f (q,  p, t)  + rrz .(p-p,)>0 

• [he(p'l)f(q, p') - hn(p,)f(q,  P)]  

-- p f -~ f (q ,p , t )  + (Cf ) (q ,p , t )  (2.7) 
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Here 03 is a vector on the unit sphere and the outgoing pair (p, Pl) is related 
to the incoming pair (p', p'~) through a collision as 

Y = P -  03[03"(P-P , ) ]  
P', = P ,  + &[&. (p _ p , ) ]  (2.8) 

Let P(.  ]p) denote the path measure of p(t) on f~ conditioned on p(0). 

Theorom 1. For any T > 0 a n d a l l A  ~@[0, T] 

l imP ' (A [p) = P ( A  [p) (2.9) 
r 

uniformly on compact sets of ~3. 

We have deliberately chosen the simplest possible setup. The proof 
works also for general domains with either deterministic or stochastic 
boundary conditions and in any dimension d/> 2. The convergence for 
arbitrary times relies on the fact that the fluid is in thermal equilibrium. For 
other initial fluid states or for boundary conditions which do not preserve 
the equilibrium state one can still prove convergence for short times. The 
limit Markov process will, in general, be nonhomogeneous in time. (4) 

To prove Theorem 1 we first give a series of definitions, establish some 
notation, and prove several lemmas. We then establish an expression for 
P ' ( A  ]p) and for certain correlation functions in terms of a perturbation 
series (BBGKY hierarchy). The proof of convergence of these correlation 
functions for short times and an iteration scheme then imply Theorem I. 

Let us define the space • ( x  1 . . . .  , Xm; C) of co l l i s ion  h i s tor i e s ,  m = 1, 

2 . . . . .  If ( x  1 . . . .  , Xm) ~ F(m)\F(m;Q, then A ( x  I . . . .  , Xm; Q = O. For 
given ( x  1, . . . , Xm) ~ F(m; Q, 

A(x~ . . . . .  x,,; E) = A ( x l , . . . ,  xm ,0 ;c)  

U U " U A 
n>~l j l = l , . . . , m  j n = l  . . . . .  m + n - - 1  

A ( X  1 . . . .  , X m , n ,  j l ,  . . .  , j , ;  e) 

with 

A(x 1 . . . . .  x,~ , n ,  j l  . . . . .  L ;  r 

c { t l  . . . . .  t n ~ l O < ~ t n <  . . .  < t l <  T)  • 2 1 5  n 

A point in A(x 1 . . . . .  Xm;E ) is denoted by 8. We equip A(x 1 . . . . .  Xm;Q 
with the Lebesgue measure d6,  i.e., d6  p A ( x  1 . . . . .  x m , n ,  j l ,  . . . , j , ; Q  
= d t l . . ,  d t n d f i l . . ,  df i ,  d 0 3 1 . . ,  d03~. A ( x t , . . . ,  xm,0;Q consists of a sin- 
gle point. The collision history corresponding to this point consists of m 
spheres starting at ( X l , . . . ,  Xm) at time T and evolving backwards in time 
for a time span T. If a triple collision occurs, i.e., if at least three spheres 
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touch each other simultaneously, then the collision history terminates and 
remains undefined for previous times. For n/> 1 the collision history 
corresponding to the point 6 E A ( x l , . . . , x , ~ , n ,  j l , . . . , j , ; e )  is con- 
structed in the following way: One starts with m nonoverlapping spheres at 
( x l , . . . ,  xm) at time T. These spheres evolve backwards in time for a time 
span T -  t. If a triple collision occurs, then the collision history terminates 
and remains undefined for previous times. Let ~ ( t t ) ,  pf(tO, if defined, 
denote the position and momentum of the j th  sphere at the end of the time 
span T -  t~. At time t~ one adds an (m + 1)th sphere to the system of rn 
spheres at the point q)~(tl)+ e&i with momentum ill- If this (m + 1)th 
sphere overlaps with any of the other spheres already present, then 6 does 
not belong to A ( x l , . . . ,  x m, n, Jl . . . .  ,Jn; e). To the configuration {x f ( tO IJ 
= 1 , . . . , m +  1} at time t t, where qm+l(tl)=qj,(tl)" + e ~ t  andpm+' l(tl) 
=13~, one associates the configuration {x f ( t  I - ) l J  = 1 . . . . .  m + 1) just 
before the collision. In particular, 

] )~ ( t l  - ) = P ; ( t l )  - [o~! .  ( /Tj~(t l )  - pine + l ( t l ) )  ]~1 
( 2 . 1 0 )  

) = + [ 4 , .  - 

if ~t"  (P,,I+ l(t~) -tTj~(tt)) > 0, and 

pi t ( t ,  - ) = (e.ll) 

. (  ~ if d ~ tim+ l(tl) -- Pj,(tl)) ~< 0. Then the configurat ion { x f ( t  I - ) tJ 
= 1 . . . . .  m + 1} evolves backwards in time for a span t 1 - t 2. If a triple 
collision occurs, then the collision history terminates. At time t 2 one acids a 
(m + 2)th sphere to the system of (m + 1) spheres at the position qj~(t2) + 
co32 with momentum t32, etc. Finally, at time t, - one has a configuration of 
(m + n) spheres which evolve then backwards in time up to t = 0. 
2x(xt . . . .  , Xm, j l  . . . . .  j~; e) is the set of points such that no overlap occurs 
upon adding extra spheres, d x l . . ,  dxm-almost surely, for dS-almost all 

~ A(xt . . . .  , xm; e) the collision history is defined. We denote by {xf( t ,  
x 1 . . . .  , xm,~)} the configuration of particles at time t of the collision 
history corresponding to t} E A ( x l , . . . ,  xm; c). 

Every collision in a collision history is called a recollision with the 
exception of those between a just added part icle and particles already 
present at the time of adding. It is also convenient to refer to an overlap at 
the time of adding as a recollision. The essence of the Bol tzmann-Grad 
limit is that recollisions disappear as e--> 0. 

For ~ --- 0 the space of collision histories, A(xi . . . .  , Xm), is defined in 
the analogous way. The time evolution is now the one of free particles. The 
kth extra particle is added at time t k at qj~(tk) with momentum 13k. For  
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given ~k the configuration (xj(tk)l j= 1 . . . . .  m + k}  is related to the 
configuration {x j ( t  k - ) l j  = 1 , . . . ,  m + k} just before the collision by 
transforming the outgoing pair of momenta (Pyk (tk)' Pm+k(tk) ) to the incom- 
ing pair of momenta (pj~(t~ - ), pm+k(tk -- )) according to (2.10) and (2.11). 
Every collision history is defined and 2x(x~ . . . . .  x , , , n ,  j l  . . . . .  jn)  
= ( / 1  . . . . .  tn ~ ~ l  0 ~< tn <~ " " " ~< T} • ~ 3 n  X ( $ 2 )  n.  We denote by {x j ( t ,  
x 1 . . . . .  x m, 8)} the configuration of particles at time t of the collision 
history corresponding to 8 ~ A(x~ . . . . .  x,~). 

As a subset of A ( x p . . . ,  Xm) we define the space of "good" colli- 
sion histories, A(x l . . . . .  Xm;0 ). This set is obtained by removing from 
2x(x 1 . . . . .  Xm) those points for which the corresponding collision history 
has a spatial coincidence, i.e., qi(t) = qj(t)  for some t, 0 < t 4 T, and some 
pair i =/=j, excluding those spatial coincidences which have to occur upon 
adding the extra particles. A good collision history has no recollisions 
between point particles. A(x~ . . . . .  X m ) \ A ( x l , . . . ,  Xm; 0) is a hypersurface 
of d6-measure zero. 

A(--;E), A(--, 0) and A(--) depend on T. If needed, we add explicitly 
the time interval under consideration as, e.g., A(-- ; c, [% T]). 

We define F~ : A(x 1 . . . .  , Xm; e)~f~  by 

g ~ : 8 - - > { t ~ - > - p [ ( r - t , x ,  . . . . .  Xm,8)lO<<.t<<. T }  (2.12) 

and F :  A(x  1 . . . .  , X m ) ~ f ~  by 

V : 8 ~ { t ~ - > - p , ( T - t , x ,  . . . .  , X m , 8 ) l O < t <  T }  (2.13) 

Let 0 ~ = (0[,0~ . . . .  ) and r = (rL, r 2 . . . .  ) be some vector of correla- 
tion functions. We define H~ (p~) : U(x, . . . . . . .  ) ~ F ( m )  A( X 1 . . . . .  X m ; e) ~ R by 

�9 �9 � 9  Xm, a) 

= ~ {~'(pkl~2(tk'Xl'l[l'X~'~))} [2('+m) 
k = l  

Xp~+rn(X~(O,x 1 . . . . .  X m , 8 )  . . . . .  X2+m(O,x, ,  . . . .  X m , 8 ) )  (2.14) 

and H(r) :  U( . . . . . . . .  m) er(m)h(xl . . . . .  Xm) --> R by 

H ( F ) ( x p  . . . , X m , ~ )  

= I"I 
k = l  

•  . . . . .  x m , 8 )  . . . . .  X ,+m(O,x  ~ . . . . .  X m , 6 ) )  (2.15) 

Let ~- /> 0 and T > ~-. For A E q5 [% T] we define the time reversed and 
shifted set A' by 

A ' =  {co'E a[0,  T -  ~'] I-'(t)= - , ( T -  t) 

for 0 <  t <  T - - T  with c0EA} (2.16) 



Steady State Self-Diffusion at Low Density 47 

Let X(') denote the indicator function of a set. Let Oj be the correlation 
functions of the nonnormalized measure x(G -IA')/~e, i.e., of the restriction 
of /x ~ to those phase points for which the path of the first particle is in 
A'. [x(G-~A')Iz e is not symmetric with respect to x~. We still define 
the correlation functions as usual by P A , r n ( X l , . . . ,  X m ) =  ~ . = 0 ( 1 / n . )  
f dx' 1 . . .  dx" f~+m(Xl , . . . ,  Xm,X] . . . . .  X',), where fA are the densities of 
x(G-1A')I~ e with respect to dy.] Let A c ~ T]. Any path is written as 
(col, co2) with co I ~ ~2[0,~-] and co2 ~ ~2[~-, T]. We define then 

A (o~1) = {co2 t (col, co2) E A } C f~[ ~-, T] (2.17) 
e Let 0~q be the vector of correlation functions of the equilibrium 

measure/~'. 
With these definitions we have the following: 

I .emma 1. For any 0 < ~- < r and all A E 03 [0, T] 

_ 2e  ~ d6H,(pA(F~(~)))(X,,8 ) (2.18) P ~ ( A [ - p l )  -- [e Peq, l ( X , ) ]  - 1  �9 
A(xl; e,[0,~]) 

Proof. Let 0 ~ S 1 ~ " " " ~ S k ~ "1" < Sk+ l ~ " �9 �9 ~ Sk+ 1 ~ T .  L e t  
x k+lr  e/S' ,  us choose A ~03[0, T] to be of the form A = j=l~P t'j) EBj} with 

Borel sets B j c ~  3. We set A,- - -X~=l{pe(s j )~Bj}~03[O,~]  and A2----- 
k+l  e S Xj=~+l{p  (7) ~ Bj} E 03[r T]. Let us set f.(p) = Xgj(-P), j = 1, . . . ,  k 

+ 1. By Y-~fj(Pl) we identify them with functions on F. Let feq be the 
densities of the equilibrium measure /~�9 on F with respect to dy and let 
Ee( �9 [p), U ( . )  denote the expectation with respect to pc(. ]p), pc(.).  Then 

E e( f , (pe(_ s , ) ) . . ,  fk+,(Pe(-- sk+l))) 

= f +  E(J,(.. .  o r _T+ .... )) 
o r e e -s~+,+s~+, , ' ' "  ) )o r_~,](y)  (2.19) 

Let V*(t) be the evolution operator for the correlation functions, i.e., if 
p is the sequence of correlation functions of some nice initial measure, then 
Ve(t)p are the correlation functions of the time-evolved measure at time t. 
By linearity V~(t) extends to arbitrary vectors of functions which are 
bounded by the correlation functions of some equilibrium measure. If 
p = {p l (Xi ) ,  P2(Xl, X2) . . . .  ),  then let fo be shorthand for {f(xOol(x O, f (xO 
p2(xl, x2) . . . .  }. Conditioning in (2.19) on the initial momentum and using 
time reversal invariance, we obtain 

Ee( f , ( -PE(S l ) ) . . .  fk+,(--Pe(Sk+I)) I --P,) 

~. [lOeq, l ( X l )  ] - -1[  V e ( s I ) f l  V e ( s  2 _ s l ) . . ,  fK 

• V~(r - sk)o~] l(Xl) (2.20) 
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V~(t)o ~ is given through a perturbation series (5) as 

c2m[ w(t)o ]m(xl . . . . .  Xm) 

=s . . . . . . .  ;<)d~nr ) ( x  1 . . . . .  xm,(~ ) (2 .2 l )  

If we expand in (2.20) all V~'s in their perturbation series (2.21), then 

P~(A  I - p , )  = -  2 c - s k e Peq, l (Xl)J  -1 A(xl;e,[O,,rl)AF_lAld~I-Ie(.O~2)(X1, (~) 

= [ e2Ogq, 1 (Xl)  ] - 1 s  d($H~(p~(v,(8)))(Xl,8 ) (2.22)  
A(xl; e,[0,r]) 

In the last step we used that for the A chosen R ( F ~ ( 8 ) )  = A 2 if F~(6) ~ A 
and A (FAS)) = 0 if F,(8) ~ A I. 

Taking finite union and intersections (2.22) holds for all A ~ 63f, Since 
gYf generates cs (2.18) follows. �9 

By the same argument one obtains the following: 

Lemma 2. For any 0 < 1- < T and all A ~ ~ [0, T], 
2m e P.m(Xl , ' . ' ,Xm) 

d8 H~(oa (Faa)))(X 1 . . . . .  X m , 8 ) (2.23) 
(xt . . . . .  x,,; ~,[0,r]) 

(2.23) is the starting point for investigating the limit e---> 0. 

Lernma 3. There is a constant c > 0 such that for any T > 0, all 
A ~ [ 0 ,  T ] ~ n d a l l m =  1,2 . . . .  

t-ta 
e2~ ~ ~ ' ' "  Xm) < 1-I zhe (P j )  (2.24) 0 < pA,,~(Xl, , C 

j = l  

provided e is sufficiently small. 

Proof .  From the definition below (2.16) it follows that 

0 << O~,m < 0 ~ (2.25) eq,m 

One knows that the equilibrium correlation functions satisfy the bound 
(2.24) for sufficiently small e. (9) �9 

Lemma 4. Let 0 < r < T with r = 0.1 ~ / z .  Let us assume that for 
a n y B  C~5[0, T - r ] a n d a l l m =  1,2 . . . .  , 

Y, �9 2 m  E ~ -  hme OB,m(Xl . . . . .  Xm) P ( B [ - P l )  l I  (zh ,~(pj)}  (2.26) 
e-+O j = 1 

uniformly on compact sets of F(m; 0, T -  r). Then for any A ~ ~ [0, T] and 
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all m --- 1,2 . . . . .  

lim 2 . . . .  . . .  Xm) P(A  f i  {zhB(pj)} (2.27) E p A , ~  x l ,  , = I - / ' 1 )  
r  j = 1 

uniformly  on compac t  sets of I ' (m;  0, T). 

Proof. Let K c F (m;0 ,  T)  be compact .  Let us set  [rA(F(8)).m(Xl, 
. . . m Z , Xm) = P(A (F(6))  ] -Pl)l-Ij= 1(h#(p j ) ) .  By L e m m a  2 we have  to show 

then that  

lira sup ( d6 H~(O~(g~(8)))(x, . . . . .  xm ,6 )  
e-~O (xl . . . . .  Xm) ~ K laA(Xl . . . . .  x.~; ~,[0,~']) 

- 1(x~ . . . . .  x,,; [0,,]) d6 H(ra (g(•))) 

•  1 . . . . .  x m , 3 )  = 0 (2.28) 

Using the bound  (2.24) together with the invar iance of the equil ibrium 
measure  it is shown in Ref. 7 that  for any  A ~ 63 [~-i T] 

IH~(o~)(xl . . . . .  Xm,8)l <. f i  (z'h#,(pj)) I-~ {z'h#,(/%)} (2.29) 
j = l  j = l  

for some pair  ( z ' , / ? ' )  independent ly  of e. Since ~- = O.lf f- f i /z ,  by assump-  
tion, the bound  (2.29) is integrable with respect  to d6 on A(x l . . . . .  Xm; 
[0, ~-]). 

Let c~ > 0. Because of the integrable bound  (2.29) we can choose 
a c o m p a c t  set K ~ c O (  . . . . . . . . .  ) e / r A ( x ~ , . . . , X m ; 0 , [ 0 , ~ ' ] )  such  tha t  
f ( 6 (  . . . . . . . . .  ) n K , ) ~ d S [ H e ( P A ( F . ( 8 ) ) ) ( X I  . . . . .  Xm,8)[ <~ a i ndependen t l y  of 
(x 1 . . . . .  Xm) ~ K. Therefore  

sup ( d6H~(OA(FXa)))(X, . . . . .  X,,, , 6 )  
( X  1 . . . . .  Xm)~K J A ( x  I . . . . .  Xm; e , [ O , ' r ] )  

- 1(x ,  . . . . .  Xm; [0, ,,])d8 H(rA(F(8)))(X ~ . . . . .  X m , 8 ) 

= 2a  + sup I(" d8 
(x 1 . . . . .  xm) ~ K [ "]/~A(xl . . . . .  Xm; r  UI K 1 

X HE(PA(Fe(~)) ) (Xl  . . . . .  X m '  (~) - -  ( x  1 . . . . .  Xm; [ O , T ] )  [-] K 1 

x n(r~(,~(~)~)(x, . . . . .  x ~ ,  ~)  (2 .30)  

Because K l is compac t  we can choose e small enough such that  there 
are no recollisions for any  collision history (x~ . . . .  , Xm,8 ) E K~. Then  
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F~(6) = F(6)  and {p;( t ,x~  . . . . .  xm,8)} = (p ) ( t , x  1 . . . . .  xm,8)} ,  0 4 t 
< ~-. Let us choose a compact  set K z C ~ ( x  l . . . . .  Xm;[0,r such that 
K 1 C K • K 2. Then the last term in (2.30) is bounded by 

~ ))} 

• sup x ( ~ ( ~ ,  . . . . .  x~; [o ,~ ] )  n K , ) ta )  
(x~ . . . .  , x . , )  ~ K 

x {oL~)),,,+m(x~(o,x, . . . . .  xm,a) . . . . .  XLm(O,x~ , . . . ,  Xm,~)) 

- - ~  ~ ) ~ , . +  m (X, (0 .  X, . . . . .  ~ , a )  . . . . .  ~o+ ~ (0, X, . . . . .  X., ,~ ) )1  

(2,31) 

There exists some compact  set /~ c F(n + m; 0, T - r) such that the 
configuration at time zero is contained i n / (  for every (x 1 . . . . .  x m , 6) ~ K~. 
By assumption the integrand of (2.31) vanishes then for every 8 E R 2 as 
e--> 0. By Lebesgue-dominated convergence we conclude then that the last 
term in (2.30) can be made less than a for suitable small enough e. 

To identy the limit one chooses again first sets A which depend only 
on a finite number  of times; cf. Ref. 4 for details of the calculation. [] 

L e m m a  5. Let T = r. Then for all A ~ ~ [0, r] and all m = 1, 2 . . . . .  

limeim#~,m(Xt . . . . .  Xm) = P ( A I  - P l )  f i  {zhe(pj)}  (2.32) 
e--~'O j = 1 

uniformly on compact  sets of r(m; r). 

Proof. As in Lemma 2 we write 

d"oL.,(x~ . . . . . .  Xm) 

x~ dSUdOoO(X, . . . . .  ~ , 8 )  (2 .33)  

For the equilibrium correlation functions 

limeZmoeq,m(X~, . . . , Xm) = f i  { zh~(pj) } (2.34) 
#--+0 j = 1 

uniformly on compact  sets of r ( m ;  0). By the argument given in the proof 
of Lemma 4 we conclude that (2.33) converges uniformly on compact  sets 
of r (m;  r). The limit is identified by using sets A which depend only on a 
finite number  of times. [] 

Proof  o f  Thoorom 1. By Lemmas 4 and 5 for any T > 0 and all 
A E ~ [0, T] 

limEZm0~,m(xl . . . . .  xm) = P ( A t  - P I )  f i  {zht~(Pj)} (2.35) 
E ~ O  j = 1 
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uniformly on compact sets of F(m; 0, T). By Lemmas 1 and 2 

2 e - - 1  e 
P ' ( A I - p ,  ) = [e Peq, l(Xl)] PA,I(X1) (2.36) 

By (2.35) this converges uniformly on compact sets of F(1; [0, T]) = A • N3. 

The proof given can be extended to the infinite hard sphere systems, 
A -- R 3, and to the motion of several test particles. Without proof we state a 
theorem in the form needed for the discussion of the steady state. We 
denote by P ' ( -  [x 1 . . . . .  x~) the path measure on (N3 • f~)n of the stochas- 
tic process of n test particles starting at (x~ . . . .  , xn). 

Theorem 2. Let A = R  3. For any T > 0 ,  a l lA  E ~ [ 0 ,  T]" and all 
n = 1,2 . . . .  we have 

l i m P ' ( A [ x ,  . . . . .  x~)=  P •  . - .  •  . . . . .  x,)  (2.37) 
e --->0 

and 

l imP~( A [(q + e2/3q~, Pl, �9 �9 �9 q + e2/3qn, P,) 
e-->O 

= e x . . .  x e ( A  I q, P,  . . . . .  q, p , )  (2.38) 

uniformly on compact sets of F(n; 0, T). 

(2.37) means that any finite number of test particles move indepen- 
dently in the Bol tzmann-Grad limit e ~ 0. (2.38) means that even if the test 
particles start close ( ~ e  2/3) to each other on the scale of a mean free path 
but far apart ( ~ e -1 /3 )  on the scale of the hard sphere diameter, they still 
move independently as e ~ 0. 

3. CONVERGENCE OF THE STEADY STATES 

We return to the steady state situation considered in Ref. 1. In 
addition to the mechanical degrees of freedom a sphere carries now a color 
o. o = 0 corresponds to white and a = 1 to black. We assume that the hard 
sphere fluid is infinitely extended and that, ignoring color, it is in thermal 
equilibrium at fugacity e-2z and inverse temperature/3. We imagine a slab, 
A, of width L perpendicular to the x axis and centered at L /2 ,  whose sole 
purpose is to impose boundary conditions on the colors. All particles to the 
left of the slab are black and all particles to the right of the, slab are white. 
If a particle inside the slab exits to the left, then its color is changed to (or 
remains) black and if it exits to the right, then its color is changed to (or 
remains) white. 

If initially all particles inside A are black, then under these boundary 
conditions the colored fluid approaches a steady state as t---> oe. (~) Let us 
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define two events: 

A (0) = (q,w) ~ ~3 • a lth e path t ~  q + 

exits A first to the right } 

A(1)  = (q,,o) ~ N 3 • a I the pa th  t ~  q + 

exits A first to the left or never exits A } 

(If q ~ A, this is considered as an exit.) Then the steady state correlation 
functions are given by 

E oj(xl,o,..., Xn,On; L) = 0eq,,(X, . . . . .  Xn) 

• pc -P~ . . . . .  qn, -Pn (3.1) 

We want to investigate the Boltzmann-Grad limit, e---> 0, of the steady 
state correlation functions. For the equilibrium correlation functions one 
knows that 

�9 2n e f i  }lI-nO~. Peq,n(X, . . . . .  Xn) = -- (zhp(pj)) ( 3 . 2 )  
j=l  

uniformly away from points of spatial coincidence. 
We start by investigating the convergence of the first correlation 

function. Since it is given through the motion of a single test particle, we 
can use Theorem 1. As before a is the path space of the momentum process 
of the test particle and pc(. [p) denotes the path measure. We set T = 0o. 
Let us define four events in ~: 

( foo tdsw(s) A(q,o ,T)= ~ E ~2 [ the path t ~-~q + 

exits A first to the right, if o = O, and exits A first 

to the left, if o = 1, during the time interval [0, T] ) 

A(q,O, T) = A(q,O,T) 

(,o fo' d~ ,o(,) A ( q , I , T )  = ~ ~2 ] the path t ~--~ q + 

exits A first to the left or stays inside A during 

the time interval [0, T i 1 
) 
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Then 

P ' ( X ( q l ,  a, oo)]p,) = P((A (o)[ q~, p~) 

By Theorem 1 for all T 

limP'(A(q,(~, T)IP) = e(A(q,o, T)IP) 
(-~'0 

Since A (q, o, T) is an increasing sequence of events as T o  oo, 

lira in fP ' (A (q, o, oo)IP) /> P(A (q, o, ~ ) I P )  
r 

For the limiting Markov process 

(3.3) 

(3.4) 

(3.5) 

Therefore 

P(A(q,a,~)[p) = 1 
o=0,1 

lira P~(A (q, o, ~)]p) = P(A (q, o, co)]p) 
r 

By the definition of A(q, a, T) this implies then 

limP~(A(q, o, oo)IP) = P(A (q, o, oo)IP) 
e - - > O  x - 

Therefore we conclude that 

(3.6) 

(3.7) 

(3.8) 

lime20~(Xl,O~; L) = zhB(pOP(M (q,,o, ~ ) ]  - P l )  
~ ?,0 

= zh, (POfL(q,, -P~, ~ (3.9) 

The exit probability fc(q , p, o) satisfies the backward equation 

3~ fr(q, P, o) + ( C*fL )(q, p, o) = 0 (3.10) P 

for q E A with the boundary conditions 

fL(q ,p ,o)=(o  for q x = 0  and r ~ . p > 0  (3.11) 
1 - o  for qx=L and r ~ . p < 0  

Here r~ is the unit vector pointing along the positive 1-direction. By 
definitionfL(q,p,o ) = o for q~ < 0 andfL(q,p,a ) = 1 - o for qx > L. 

Extending somewhat the analysis in Ref. 10 one obtains bounds which 
ensure that fL(q, p,o) is linear in q up to errors of the order 1/L. Also the 
steady state current, jL(q,o)= fdp PfL(q, p,o), equal D/L  up to errors of 
the order 1/L 2 with D the diffusion coefficient as computed from the 
linear Boltzmann equation (2.7). 

Using Theorem 2 and the analog of the above argument, we obtain the 
following: 
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Theorem 3. The steady state correlation functions converge in the 
Boltzmann-Grad limit, 

lim e2np2 (x 1, o 1 . . . . .  x n , %; L) 
e--)0 

= r[  (zhr  - p j , o j ) )  d x ~ . . ,  dxn-a.s. (3.12) 
j = l  

The factorization (3.12) is equivalent to the fact that the color random 
field becomes deterministic as e ~ 0 .  Let n~(A0,o) be the number of 
particles of color o in the bounded region A 0 c R 3 • R3. Then 

} ime2n~(Ao,o)= f a o d q d p z h ~ ( p ) f L ( q , - p , o )  (3.13) 

in probability. 

4. LOCAL EQUILIBRIUM 

On the scale measured in units of the mean free path the microscopic 
structure is completely lost in the Bol tzmann-Grad limit. Any finite volume 
on this scale eventually contains an infinite number of particles. One may 
partially recover this microscopic structure by considering the system on a 
scale of a constant interparticle distance. On this scale the mean free path 
grows as E -2/3. Also the system size has to increase as e -2/3, e.g., in the 
steady state setup L ~ e  2/3. On the other hand, on this scale the hard 
sphere diameter is c ~/3 and therefore still goes to zero in the Boltzmann- 
Grad limit ~ ~ 0. Therefore locally the system resembles an ideal gas. Since 
density and velocity distribution change only over distances of the order 
e-2/3, locally the state, of the system approaches that of an infinitely 
extended ideal gas in equilibrium (constant density and arbitrary velocity 
distribution). The crucial point here is that the state of the system has the 
identical structure even when evolved over several mean free times and that 
the parameters determining the local equilibria are governed by the Boltz- 
mann equation. 

It is convenient to go back to the scale which we used all the way long, 
namely, the one measured in units of the mean free path. We investigate 
then the distribution of particles in a small (of the order e 2/3, equivalently 
of the order one on the scale of a constant interparticle distance) neighbor- 
hood around the point q. We define the local state at q through its 
correlation functions 

p~(Xl,O1, . . . , X, ,o,; L ,q )  

= < ( q  +  2/3q,, e l , o ,  . . . . .  q +  2/3q., p.,  o~ L) (4.1) 
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Comparing with (3.1) one has to study now test particle processes, where 
the initial positions of the test particles are separated on the order c 2/3, but 
are still far apart, c - l / 3  on the scale set by the hard sphere diameter. For 
the equilibrium correlation functions 

!i~O~q,n(q+E2/3ql, Pl . . . .  'q+E2/3qn'Pn)= rI  (zh~(pj)} (4.2) 
j = l  

Therefore, using Theorem 2 and the argument given in the previous section, 
we obtain for qx v~ 0, L 

!in~pnC(Xl, O1 . . . .  , Xn ,On; q) = f l  { zhB(pj)fc(q, -pj ,a / )  ) dx, . . . dx~-a.s. 
j = l  

(4.3) 

In the Boltzmann-Grad limit the local state of the system at the point 
q E ~3 is the equilibrium state of an infinitely extended, colored ideal gas: 
The gas has constant density z and a Maxwellian velocity distribution at 
inverse temperature ft. Independently of its location a particle with momen- 
tum p is black with probability f c ( q , - P ,  1) and white with probability 
fL(q, -p ,O)  = 1 - fL(q, - P ,  1). 
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